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Abstract—The classification and at the same time the inter-
active characterization of both bad connections, called alerts or
attacks, as well as normal connections, is a must for monitoring
network traffic. For this specific task, we developed in this
study a neuro-symbolic predictive model based on Logic Tensor
Networks. Moreover, we present in detail the advantages and
disadvantages of using our hybrid system versus the usage of
a standard feed-forward deep neural network classifier. For a
relevant comparison, the same dataset was used during training
and the metrics resulted have been compared. An overview
shows that while both algorithms have similar precision, the
hybrid approach gives also the possibility to have interactive
explanations and deductive reasoning over data.

Index Terms—neuro-symbolic model, logic tensor networks, IT
alerts, deep learning classifier

I. INTRODUCTION

While the COVID-19 pandemic is still affecting almost all

aspects of our lives, it is also the trigger behind sudden changes

in IT operations and infrastructures. With a paradigm shift in

corporate ethos and an unprecedented increase in work-from-

home employees, a significant portion of workplaces have

already considered opening new positions and converting some

of them to a fully remote working environment. As some

recent studies suggests [1], [2], the effects of the outbreak

and the remote transition can also be seen in the rise of cyber

crime, with an estimating increase in attacks of 500-600%.

Cybersecurity attacks have been a known threat in IT, but the

sudden spike in the number of cases makes improvements in

this area even more relevant than ever.

A solution against such attacks is the integration of an

Intrusion Detection System (IDS) and an Intrusion Prevention

System (IPS), with the first one rising any possible infrastruc-

ture alerts in the case of a potential attack and the latter one

responding with changes in the network. The main focus of

this paper is to design and to implement an IDS that uses a

novel neuro-symbolic approach and to emphasize its benefits.

The importance of an IDS is detailed in multiple cases, one of

them being [3], where the authors also explain the evolution

of such systems. An overview of artificial intelligence models

and previous applications in distinguishing between good and

bad connections shows two main branches, namely Symbolic

AI (also known as GOFAI) [4] and Deep Learning [5]–[9].

Symbolic AI saw its glory days and peaked in hype between

1975 and 1990 when Expert Systems were seen as a solution

for almost any problem, given a suitable Knowledge Base. Its

downfall was caused by the systems inability to scale well to

the addition of new set of rules and the incompleteness of such

information in Knowledge Base [10].

Deep Learning excels in recognizing hidden patterns and

became the modern go-to solution for complex problems such

as image recognition [11], classification tasks [5], [11], [12]

or estimations of human pose or age [13]. The drawbacks in

this case are that it is susceptible to adversarial attacks [14]

and presents the ”black box of AI” problem due to the high

number of auto-adaptive parameters and hyper-parameters.

This approach was criticized for the lack of transparency on

both the way the model produces results, and the logic over

data obtained through training [15].

The proposed solution is a mixture of those two approaches.

To overcome the deficiencies, Logic Tensor Network (LTN)

[16] is a neuro-symbolic system that integrates symbolic

knowledge and reasoning to deep learning models. This neuro-

symbolic model supports learning, deductive reasoning and

complex query answering, with a coverage of AI tasks similar

to a neural network. This is possible by using Real Logic,

a differentiable first-order logic language that interprets the

semantics of LTN as Tensorflow computational graphs [17].

A. The LTN model

LTN semantics consists of groundings such as constants,

variables, predicates, functions, connectives and quantifiers.

Constants in Logic Tensor Networks are depicted as tensors

that can be of any rank. Tensors can be represented as n-

dimensional arrays as shown below. Let the following:

⋃
i1,i2,...,ik∈N∗

R
i1×i2×...×ik

denote the set of tensors of any rank. The tensor of rank

0 represents a scalar value, a rank 1 tensor represents a one-

dimensional vector, a rank 2 one represents a matrix, and so

forth.

For the constant α let us refer to the associated tensor by

G(α). As an example, consider the constants x, y, z and the

associated tensors G(x),G(y),G(z) of different ranks.
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G(x) =
(
1 2

)
, G(y) =

(
1 2
6 7

)
, G(z) =

⎛
⎝1 2 3
4 5 6
7 8 9

⎞
⎠

Predicates in LTN are mapped to functions or tensor op-

erations return a value in [0,1] that denotes a satisfaction

level and can be interpreted as a truth degree. A predicate

can be a simple λ function or a neural network of any

shape and activation function (the only exception would be

on the last layer, where a sigmoid function should be used

to return a value of partial truth). Satisfiablity in LTN can

be calculated by using an operator to aggregate the set of

proposed formulas. The value of satisfiablity can be improved

by modifying the groundings of such proposed formulas, also

known as the process of learning. Connectives implemented

in LTN are modeled to the semantics of first-order fuzzy logic

[18]. Some of these are negation, implication, conjunction, and

disjunction. Quantifiers supported in LTN are ∀(universal) and

∃ (existential) and are defined as aggregation functions. In the

following experiments, only the ∀ p-mean error aggregator is

used in training, and it is particularly helpful in aggregating

the truth values of multiple formulas. A parameter p used in

the function

X(a1, a2, a3, ..., ak−1, ak) = 1−
(
1

k

k∑
i=1

(1− ai)
p

) 1
p

adjusts the strictness of the aggregator and a high value finds

its use in querying where the focus is on the formulas, contrary

to training where a lower value is used to prevent overtiffing

and make it possible to generalise. For example, p = 1 would

output the mean value, a p = 2 would result in an aggregation

function that outputs the standard deviation of the inputs and

a p =∞ would output the minimum value.

Variables are defined as a sequence of individuals.

B. Related work

Some of the papers that do similar work in recognizing

the potential of hybrid systems are [25], [27]. While in the

latter one, the term ”hybrid system” is not directly used there,

the authors explain how it is crucial for deep learning models

to become able to make connections and associations in raw

data, and to process them in a way suitable for further use.

Also, they present how achieving that is possible by adding

the benefits of Symbolic AI to Deep Learning models. Both

papers also show the advancements of neuro-symbolic AI.

Another related work providing a comparison study between

multiple algorithms is [26]. The authors also include an

explanation of how the algorithms work on a specific dataset

(in their case MNIST), then a part of experiments and in the

end, they compare various results.

II. LTN SYSTEM FOR INTRUSIONS DETECTION IN

NETWORK TRAFFIC

We designed and we experimented with a novel solution for

characterizing IT security alerts based on LTN. By operating

our model, we provide a detailed explanation of the results and

we highlight the aspects that should be taken into consideration

by anyone interested in the hybrid approach. We saw the

potential of hybrid systems and used them in real-world

scenarios such as the KDD99 dataset [21], to observe and

interpret the results.

Fig. 1. Distribution of connection types before removal of duplicates

On the KDD99 dataset, our system seeks to discriminate

between regular connections and intrusion attacks. KDD99

has 41 features and 494.020 entries, and it contains a wide

range of network traffic connections. The ideal situation for

an intrusion detection model is to identify the precise type of

attack, however as shown in Figure 1, data for some attacks

is insufficient, justifying the use of a logarithmic scale. It’s

worth noting that each link in our dataset contains an attribute

named label that shows the type of connection. We know that

all attack types fit into the categories of DOS, R2L, U2R, or

probe with the use of a Python Data Analysis Library called

Pandas [20] and some prior information supplied in [22], [23].

As such, to help with the scarcity of some attacks and

make a good prediction possible, we grouped all the intrusions

by the category that they belong to. With DOS (denial
of service) attack types, a huge amount of repeated server

requests is sent with the malicious intent of using the victim

resources, blocking any possible connections, or even forcing

a shutdown/reboot. ”back”, ”land”, ”neptune”, ”pod”, ”smurf”

and ”teardrop” are attacks from KDD99 dataset that fall into

this category. R2L are attacks aimed to gather local data from

another computer or server. The way this is done may be

different, but the goal is the same. Attacks can try to query the

computer/server, ”guess” the password via social engineering,

or create local Trojan files to log any activity. In our dataset,

”ftp write”, ”imap”, ”multihop”, ”phf”, ”spy”, ”warezclient”

and ”warezmaster” are R2L attacks. U2R attacks happen when

the attacker has access to another computer/user from the

targeted network. It is meant to gain control of the root. This is

possible by exploiting weaknesses in software and while it can
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be avoided, a complex software is prone to fall victim to this

attack. In KDD99, ”buffer overflow”, ”loadmodule”, ”perl”

and ”rootkit” are attacks that target the root. Probe attacks

are different from the ones mentioned before. Some of these

attacks, such as ”ipsweep”, ”nmap”, ”portsweep” and ”satan”

search for any possible weakness in the targeted computer.

Usually in the form of connected IPs or open ports.

Fig. 2. Before removal of duplicates

A very helpful analysis of the KDD99 dataset and the

impact of the features in intrusion detection can be found in

[19]. Taking a look at that analysis and our exploration of the

dataset, connections normal, smurf and neptune represent the

vast majority and after grouping them, DOS and normal types

are predominant as in Figure 2.

It is to be noted that most DOS attacks work by sending

a large volume of traffic to the network system and while

this attack category is without a doubt the most popular one

(with smurf attack type being by far the most predominant

one in this category) in the original dataset, after removal of

duplicates (with the intent of reducing the size of the dataset

and improving its quality) that is no longer true. The results

after the removal of duplicates can be seen in Figure 3.

As Figure 3 shows, the distribution of data into classes is

still far from being balanced. That being the case, during our

experiments, we acknowledged that and tried using SMOTE

oversampling technique [28] to increase the number of minor-

ity connection types [24]. While it did solve the scarcity issue,

especially for U2R attacks, the computation power needed also

greatly increased and resulted in a longer training time needed

for the model. This tradeoff, at least in this specific example,

did not seem worth it, as accuracy values were already good.

III. EXPERIMENTAL RESULTS

We normalized the data, one-hot encoded the categorical

values, and maintained just the relevant features to appropri-

ately categorize the attacks. The logic element of our neuro-

symbolic framework is shaped by this feature significance,

which allows us to apply Real Logic to identify potential

threats. The relevant features are utilized to divide the dataset

Fig. 3. After removal of duplicates

into a training set and a testing set, which will be used to

train the model later on. As previously said, the purpose

of this example is to demonstrate how to utilize LTN to

discern between a regular connection and an attack, as well

as categorize the latter.

This necessitates the definition of logic and the training of

the model. As indicated previously, a predicate in LTN can be

a neural network. In our case, a Deep Neural Network was

used, but with the last layer having a ”softmax” activation

function for the 5 newly grouped connection types. Normally,

the aim of training is to maximize the loss value of that model,

but for our neuro-symbolic model, the training objective is

to maximize the satisfaction value of the Knowledge Base,

composed by the set of axioms. The axioms are defined by

each category of connections being represented by a label,

denoting the class labels. We utilized the following set of Real

Logic axioms to cover all potential cases and add additional

constraints to make overfitting less likely.

∀xnormal : P (xnormal, normal)
∀xDOS : P (xDOS , DOS)
∀xprobe : P (xprobe, probe)
∀xR2L : P (xR2L, R2L)
∀xU2R : P (xU2R, U2R)

∀x : ¬(P (x, normal) ∧ P (x,DOS))
∀x : ¬(P (x, normal) ∧ P (x, probe))
∀x : ¬(P (x, normal) ∧ P (x,R2L))
∀x : ¬(P (x, normal) ∧ P (x, U2R))
∀x : ¬(P (x,DOS) ∧ P (x, probe))
∀x : ¬(P (x,DOS) ∧ P (x,R2L))
∀x : ¬(P (x,DOS) ∧ P (x,U2R))
∀x : ¬(P (x,R2L) ∧ P (x, probe))
∀x : ¬(P (x,R2L) ∧ P (x, U2R))
∀x : ¬(P (x, probe) ∧ P (x, U2R))

An explanation for the proposed set of axioms is needed. In

top down order:

• all the non-attacks should have label normal;

• all the DOS attacks should have label DOS;
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• all the probe attacks should have label probe;

• all the R2L should have label R2L;

• all the U2R attacks should have label U2R;

• if an example x is labelled as normal, it cannot be labelled

as DOS too;

• if an example x is labelled as normal, it cannot be labelled

as probe too;

• if an example x is labelled as normal, it cannot be labelled

as R2L too;

• and so forth...

Based only on the defined logic, we have calculated the

initial satisfiability level to be 0.59471. We concluded training

the model to detect intrusions is crucial. To make a comparison

possible, most of the metrics used in training are similar with

the exception of the 3 φ formulas.

1) The level of satisfiability of the Knowledge Base of the

training data.

2) The level of satisfiability of the Knowledge Base of the

test data.

3) The training accuracy (calculated as the fraction of the

labels that are correctly predicted).

4) The test accuracy (same thing, but for the test samples).

5) The level of satisfiability of a formula we expect to be

true. ∀x : p(x, normal)→ ¬p(x,DOS) (every normal
connection cannot be a DOS connection and vice-versa)

6) The level of satisfiability of a formula we expect to be

false. ∀x : p(x, normal)→ p(x, probe) (every normal
connection is also a probe one)

7) The level of satisfiability of a formula we expect to

be false. ∀x : p(x, normal) → p(x, normal) (every

smurf connection has a normal connection status)

The training metrics are stored in a .csv file that is also

represented in Figure 4 and they can be interpreted as follow.

In the first epoch, the level of satisfiability of the Knowledge

Base increased from the initial value of 0.54725 to 0.6759

for the training data and 0.7216 for the test data. The results

in the beginning of the training may seem atypical, with a

higher accuracy for the test data, but it can be explained by

the non-uniform intrusion distribution.

Satisfiability level in a neuro-symbolic models is similar to

a loss function from deep learning and its evolution can be

conceptualized as optimizing the model under relaxed first-

order logical constraints. As the level of satisfiability for our

Knowledge Base increased, the accuracy also improved, with

values ranging from 0.7757 for our train data and 0.9162 for

our test data in the first epoch and up to 0.9954 and 0.9947

respectively in the last epoch of training. Comparably, the

accuracy for the standard deep neural network was 0.98863

for train data and 0.9869 for test data.

The set of Real Logic axioms that characterize the KDD99

dataset, was subsequently adapted also for the novel CIC-

IDS2017 intrusion detection evaluation dataset [29].

For the neuro-symbolic model and the knowledge base in

the CIC-IDS2017 scenario, we defined only that all the DDoS

attacks should have a ”DDoS” label and all BENIGN connec-

tions should have a ”BENIGN” one and PortScan should have

a ”PortScan” one. There was no need for constraints since the

number of classes was small. The function grounded in LTN

semantics was kept the same (a neural network with no change

in the shape of hidden layers) and the metrics measured were

also kept, with the removal of φ queries.

IV. DEEP NEURAL NETWORKS VERSUS LOGIC TENSOR

NETWORKS

In this section, we present in a compact way the advan-

tages and disadvantages of both Deep Neural Networks and

Logic Tensor Networks, for designing and constructing such

a security alerts classification system.

A. Deep Neural Networks

Advantages of using a Deep Neural Network
• With little to no changes needed, it can be used on

different applications and data types.

• Numerous articles [1]–[3] from trusted sources show

amazing results in prediction, recognition and classifying.

• Depending on how the neural network is used, it can

be supervised, unsupervised, semi-supervised or self-

supervised. This covers most classification challenges.

Disadvantages of using Deep Neural Networks
• Lack of transparency on the model results. It is hard to

understand how the input turned into the output. Black

box problem represents one primary reason behind the

shown interest in hybrid systems.

• To develop even a basic deep neural network, you need to

have a good understanding of statistics, probability, linear

algebra, calculus and data analytics.

• There is a high chance of causing overfitting. The model

may focus on irrelevant details instead of the true under-

lying pattern that you wish to learn from the data. This

leads to the trained model not being able to generalize

well and have poor results in unseen data.

B. Logic Tensor Network

Advantages of using Logic Tensor Networks
• Logic Tensor Networks are able to solve most of neural

networks tasks. Implementations of binary classification,

single-label classification, multi-label classification, re-

gression, clustering and prediction problems can be found

on author’s repository [17].

• Hybrid systems require a reduced amount of training

data. This is due to logic being defined beforehand that

makes the neuro-symbolic framework to have a better

initial state. Relational knowledge about objects, logical

inference and ontological knowledge can be defined by

Real Logic and make learning more efficient.

• Probably the most important aspect of Logic Tensor

Networks is that Symbolic reasoning makes it possible

for humans to understand how the model gave a specific

output. One can query the satisfaction level of any defined

formula and the results, query the constraints while also

measuring the accuracy. The satisfaction level is depicted
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with a fuzzy logic with values in [0,1], as opposed to the

usual boolean value. The network uses the maximization

of the satisfaction rules as an objective in learning by

optimizing the groundings. Figure 4 shows it is possible

Fig. 4. Comparison of Accuracy, Satisfiability and Querying of Constraints
for the LTN model

to have an accuracy metric (number of correct predictions

divided by total number of predictions), specific to deep

learning, but also have a satisfaction level of both the

provided formulas and the queried constraints. Spikes in

the first two graphs also make sense, as an incorrect

prediction leads to a drop in the truth values of the

axioms. While these are related, the accuracy level is

almost perfect, while the satisfaction level can see some

improvements. An ideal case to maximize both accuracy

and satisfaction level of the Knowledge Base can only

exist when the set of defined formulas perfectly resembles

the correlation between the features, but that can prove

to be difficult. Alt ought, this problem is mitigated by the

ability of Deep Learning models to see the connections

of features in data. LTN can also generalize and use

learned knowledge when querying constraints and give

impressive results.

• Overfitting can be avoided by providing accurate logic

constraints in axioms.

Disadvantages of using Logic Tensor Networks

• While LTN can solve for example a multiclass classifica-

tion it may not be the best alternative. KDD99, the dataset

used in this paper has 42 types of attacks that need to be

classified. It is entirely possible to relate them to each

other but doing so may be cumbersome.

• As some problems may need extensive logic defined,

it is to be noted that the number of axioms affects

computational power.

Table 1 provides a side to side comparison of the Pros and

Cons of Deep Neural Network versus Logic Tensor Networks.

Deep Neural Network
PROS CONS
flexible implementations for
upcoming challenges

black box

impressive proven results
requires deep understanding of
machine learning

can solve most classification challenges overfitting can be a problem

Logic Tensor Network
PROS CONS

coverage of classification tasks
some problems require
extensive logic defined

needs less data to train
scalability issue more axioms results
in more time needed for training

interactive accuracy, learning
and deductive reasoning possible

-

easier to avoid overfitting -

TABLE I

V. CONCLUSIONS

The Logic Tensor Network proved to be able to give supe-

rior results for KDD99 dataset, with a very good precision in

distinguishing between attacks and normal connections. It also

adds another dimension in the interpretability of the model and

the results, with Real Logic making it easier to understand how

decisions were made. The experiments show that the addition

of Symbolic Reasoning improves the quality of possible IDS

based on hybrid systems and that advancements in the neuro-

symbolic area are a tangible part of the future of Artificial

Intelligence.
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